Pavement Management Systems Implementation for Local Agencies using Automated Data Collection

Lax Premkumar, P.E.

September 29, 2023

2023 Fall Conference at Ashore Resort & Beach Club, Ocean City, Maryland

Presentation Outline

- Introduction- Pavement Management Concepts
- Implementation Process
 - Info from Agencies
 - Data Collection & Condition Rating
 - Automated Data Collection and Processing
 - ✓Case Study
 - Data Analysis
 - Software Options
 - QC/QA

Fundamental Concept of Pavement Management

- Quantifies condition objectively
- Predicts condition (next few years)
- Helps identify optimal type & timing of treatment

...With the Ultimate Goal of ...

The Best Bang for the Buck!

Components of a PMS

•

Information Required from Agencies

- Treatment **Activity Type**
- Unit Cost
- **Consequence of Activity (PCI** change, year to next activity

6

Data Collection Methods

Manual Method

- Foot-on-ground or windshield surveys in the field
- Typically, sample unit based

Semi-Automated

- Combination of automated and manual methods
- Survey performed manually using images collected using automated methods

Fully-Automated

- Using automated data collection and analysis
- Minimal manual intervention

Data Collection Methods

- LCMS 3D Pavement Imaging 1mm cracks are clearly visible; full lane-width coverage
- Right of Way Imaging High resolution, geotagged images
- IRI, Faulting and Rutting High-speed laser profiler is certified at TTI
- Pavement Geometry Cross slope and grade
- Sub-meter accuracy GPS Coordinates

Example Pavement Images

Example Right of Way Images

Angled Left

Center

Angled Right

Georeferenced Right of Way Images (Rear View also Captured)

Processing Pipeline

Automated condition surveys are a good option to increase productivity for large networks

PCI

Distress Rating

STEP 1 AUTOMATED

Alligator cracking Block cracking Longitudinal cracks Transverse cracks Sealed cracks Edge cracks Potholes Curbs or edge drop-off Rutting Raveling Concrete joints

100% Distress Rating on Surveyed Area

STEP 2 MANUAL REVIEW

> Editing quantities and severities False positives False negatives Other distresses PCC pavement distresses

Automated Surveys – Things to consider

Higher Level Distresses

- Lower traffic
- Thinner pavement cross sections
- Longer rehabilitation cycles

Unique Geometry

- Curb and gutter
- Unsupported edges
- **Factors Affecting Analysis**
- Equipment accuracy during collection
- Distress classification

Switch from Manual to Automated?

False Comparisons

- Too many variables
- Index translation
- Some details might be used by one and not the other

Consistency

- Use of old data
- Progression of condition
- Existing settings and tools

Case Study-IL County

- Size: 250 centerline miles Timing: 2015, 2018, 2021 & 2023 Evaluations:
- Surface using modified PCI
- Structural using FWD
- **Surface Condition Equipment**
- LCMS Sensors
- ICC Connect for LCMS to PCI
 ARA's RoadCare Software

Modified Pavement Condition Index

- Manual surveys performed with sampling
- Automated surveys performed at 100% of surveyed area

Manual Survey	Automated Survey
Longitudinal Cracking	Longitudinal Cracking
Transverse Cracking	Transverse Cracking
Fatigue Cracking	Fatigue Cracking
Potholes	
Centerline Cracking	Linear Cracking
Block Cracking	
Bleeding	
Patching	
Weathering	

IL County Treatment Matrix

Cold-Inplace Recylcing Options

60	CIR 4 (max) + Cape Seal	CIR 4 (max) + 1.5 Poly	CIR 4 (max) + 2 Poly		CIR 4 (max) + Cape Seal CIR 4 (max) + 2 HMA
40	CIR 4 (max) + 1.5 Poly	CIR 4 (max) + 2 Poly	CIR 4 (max) + 2.5 Poly	CIR 4 (max) + 1.5 HMA	CIR 4 (max) + 2.5 HMA

Individual Distresses

Individual Distresses

Fatigue Cracking - 2018

Fatigue Cracking - 2021

Sample Images

Pavement Condition Index

PCI Difference Histogram

PCI Difference Histogram

Decisions

w.ara.com

Decision Criteria Comparison

Back to PMS-Software

- Several types of PMS software available
- Wide range in capabilities, ease of use & cost

Pavement Performance Models

Treatment Selection Criteria

Trea	tment Matrix f	or Arterial/Col	lector Roads	Trea	ntment Matrix f	or Local/Resid	ential Roads
50	Localized Preventive	Localized Stop Gap	Major M&R	PCI	Localized Preventive	Localized Stop Gap	Major M&R
PCI 0 25			Reconstruction	0 25			Reconstruction
40	No Localize Preventive Treatment	No Localize Preventive Treatment Patching and Repair		40	No Localize Preventive Treatment Recommended		3.0" Mill & Overlay
	Recommended		3.0" Mill & Overlay	60			2.0" Mill & Overlay
65	Crack Seal and Distress Repair	No Localized Stop Recom	Gap/ Major M&R mended		Crack Seal and Distress Repair	No Localized Stop Recom	Gap/ Major M&R mended
100			anhadu /	100			

Budget Allocation-Example

Treatments

Maintenance & Rehabilitation	Budget	\$/lane
Ireatment Description	Category	mile
Crack Seal	Maintenance	\$6,200
Thin Lift Treatment (TLT)	TLT	\$75,000
M&R 2"	Rehabilitation	\$85,000
M&R 3-3/4"	Rehabilitation	\$145,000
Reconstruction	Rehabilitation	\$1,200,000

Maintenance & Rehabilitation Treatment Description	Budget Category	Impact on CRS	Years before same treatment	Years before any treatment	Impact on Surface Age
Crack Seal	Maintenance	+3%	5	2	+1
Thin Lift Treatment (TLT)	Minor	= 7.0	10	1	+1
M&R 2"	Major	= 8.0	8	1	0
M&R 3-3/4"	Major	= 8.5	12	1	0
Reconstruction	Major	= 9.0	20	1	0

- Predict treatment activities for future years
- Use performance models, treatment matrix, budget, feasibilities & constraints
- Benefit-Cost Ratio or other methods

Funding Scenario	Total 5-Year Funded Costs (2023-2027)	Remaining M&R Backlogs in 2027	Total 5-Year Costs	Predicted PCI 2027
\$1.3M/year - Eliminate Backlogs	\$6.7	\$0.0	\$6.7	90
\$1.0M/year - Target PCI 80	\$5.2	\$2.2	\$7.5	83
\$830K/year - Maintain Current Condition	\$4.2	\$3.4	\$7.6	75
\$750K/year - Increased Funding	\$3.7	\$3.9	\$7.6	72
\$665K/year - Maintain Current Fund	\$3.3	\$4.4	\$7.7	69
\$400K/year - Reduced Funding	\$2.0	\$5.8	\$7.8	61
\$0/year - Do Nothing	\$0.0	\$8.1	\$8.1	49

1. 'M&R Backlogs' refers to the amount required to resurface/reconstruct all pavements at or below critical PCI.

2. 'Total 5-Year Costs' refers to the sum of 5-year major M&R expenses and remaining backlogs at the end of 5-year period

8

7

6

5

Dollars

4 3 2 Millions of I

1

Sample Output (Summarization)

Year	Branch ID	Section ID	PCI Before	Area (sqft)	Cost	Functional Class	Surface Type	Length (ft)	Width (ft)	Work Type
2031	WATERFORD_	578	57.46	3,584	11068.65464	Resdential	AC	224	16	1.75" - 2.25" Mill and Overlay
2031	WEINHOLD_D	104	59.42	8,679	26803.80961	Resdential	AC	263	33	1.75" - 2.25" Mill and Overlay
2031	WHITE ASH_	949	57.46	9,842	30395.56333	Resdential	AC	518	19	1.75" - 2.25" Mill and Overlay
2032	127TH_ST	91	0	52,962	912836.2114	Collector	AC	2037	26	Full Reconstruction
2032	135TH_ST	21	0	121,356	2091653.474	Collector	AC	3371	36	Full Reconstruction
2032	ALISON_RD	351	57.83	22,240	72119.20289	Resdential	AC	1112	20	1.75" - 2.25" Mill and Overlay
2032	ARBOR_CT	1342	59.68	6,112	19819.80972	Resdential	AC	191	32	1.75" - 2.25" Mill and Overlay
2032	ARBOR_DR	1344	59.68	11,808	38290.62715	Resdential	AC	369	32	1.75" - 2.25" Mill and Overlay
2032	ARBORVIEW_	742	57.83	11,480	37226.99862	Resdential	AC	410	28	1.75" - 2.25" Mill and Overlay
2032	BIRCH_CT	1129	59.68	4,116	13347.24097	Resdential	AC	147	28	1.75" - 2.25" Mill and Overlay

Number Sections	Cost	Wt. Avg. of PCI before Maintenance	Wt. Avg. of PCI after Maintenance
7.33 mi (Localized Preventive)	\$137,659	67.9	78.5
71.97 mi (Localized Stopgap)	\$103,268	25.2	25.9

Data Quality Management Plan

\leq

DSV Field Data Collection Quality Control Plan

Prepared for:

Florida Department of Transportation

State Materials Office

Prepared by: Applied Research Associates, Inc. 3605 Hartzdale Drive Camp Hill, PA 17011 (717) 975-3550

ARA

AUOTMATED CONDITION SURVEY TESTING & QA/QC PLAN

City of Minneapolis, MN

lient	City of Minneapolis, Minnesota
Project Number	1369A16
Project Location	Minneapolis, Minnesota
Mobilization Date	09/27/2016
esting Dates	09/29/2016 - 11/21/2016
Meeting Time & Location	TBA

DNTACTS	
ynatest	City of Minneapolis
alil Gokhale, PE	Joe Casey
ell: (352) 281-9654	Engineering Applications Analyst Cell: (612) 221-9470
euben Williams, PE	Office: (612) 673-2425
ell: (512) 579-7644	

FDOT Monthly Verification Sites Report - AUGUST 2021

Test	Information

OVERALL RESULT			PASS
	78060W1		
Sections Tested	26080ET, 26080WT, 26510ST, 28060WT	Processing Software	ICC Connect /Excel
Test Administrator	Noah Borelli	Date of Test	8/10/2021
Test Driver	Jose Berrios	Test Operator	Manny Wilson
Owner	Applied Research Associates	Date of Last Cert.	7/10/2021
DSV ID / Tag	ARA DSV-10 (PA ZPX 1556)	LCMS Software	ICC WinPRO 3.7.6.0
DSV Mfg.	International Cybernetics Corporation (ICC)	LCMS Model	LCMS-2

Rutting/Faulting Statistical Results

The p-values of two-one sided test of equivalence for paired samples (TOST-P) must be below 0.05 to pass.

The hypothesized mean difference is assumed to be 0.06 in for rutting and 0.08 in for faulting. Total section length of each section is 0.3 miles. Subsection Length 0.03 miles. The results are shown in the table below:

Section 1: 26080ET - SR20 (Asphalt Concrete Pavement)

0.39	DSV Rutting average (in)	0.42
0.00	Result	PASS
0.37	DSV Rutting average (in)	0.40
0.01	Result	PASS
	0.39 0.00 0.37 0.01	0.39 DSV Rutting average (in) 0.00 Result 0.37 DSV Rutting average (in) 0.01 Result

Section 2: 26080WT - SR20 (Asphalt Concrete Pavement)

Refence Device LWP Rut average (in)	0.18 DSV Rutting average (in)		0.22
p-value (max)	0.00	Result	PASS
Refence Device RWP Rut average (in)	0.21	DSV Rutting average (in)	0.23
p-value (max)	0.00	Result	PASS

Section 3: 26510ST – CR225 (Asphalt Concrete Pavement

Refence Device LWP Rut average (in)	0.16 DSV Rutting average (in)		0.18
p-value (max)	0.02	Result	PASS
Refence Device RWP Rut average (in)	0.11	DSV Rutting average (in)	0.11
p-value (max)	0.00	Result	PASS

PENN AVENUE S (SMOOTH ASPHALT)

Road Name	From	То	Length (mi)	Description
Penn Ave S	Crosstown Hwy	W 54 th Street	0.95	Smooth AC

Locations of Start and End points on Penn Avenue S are shown in Figure 1 below. The overall section average IRI is shown in Figure 2, while IRI calculated in 0.1 mile (528 ft.) intervals in shown in Figure 3.

What about Structural Testing?

- Falling Weight Deflectometer (FWD)
- Nondestructive testing
- Measures deflection
- Composite Modulus of HMA, Subgrade modulus, & Structural capacity

Why the Interest in Pavement Preservation?

- Pavement Infrastructure a Huge Investment
- Important to Preserve Investment
- Effective Pavement Preservation Program:
 - Right Pavement
 - Right Treatment
 - Right Time

Conclusions

- Benefits of PMS-Objective tool for selecting when, how, and which roads to improve
- Quality of data
- Structural data is beneficial
- Pavement preservation

Conclusions (Automated Surveys)

Pavement Management Critical Items

- Understand the differences
 - Distress identification and classification methodology
 - Multiple vendors
 - Reprocess old data to evaluate
- Focus on Decisions
- Effect of sampling

ARA

THANK YOU FOR THE OPPORTUNITY

Lax Premkumar, P.E. Group Leader and Senior Engineer Applied Research Associates, Inc. 3605 Hartzdale Drive Camp Hill, PA, 17011 (717) 975-3550 Ipremkumar@ara.com

